Comments of the

World Shipping Council

Submitted to the

U.S. Coast Guard

In the matter of

Port Access Route Study:
The Atlantic Coast From Maine to Florida

Docket Number:
USCG-2011-0351

August 9, 2011
The World Shipping Council (WSC) is a non-profit trade association that represents over twenty-eight liner shipping\(^1\) companies that carry approximately 90% of U.S. international containerized trade. WSC files these comments with the U.S. Coast Guard (USCG) in response to the notice published on May 11, 2011, 76 Fed. Reg. 27288, which invites public comments on the USCG Port Access Route Study (PARS) to examine existing shipping routes and waterway uses to reconcile the right of navigation with other reasonable uses such as the leasing of outer continental shelf (OCS) blocks for renewable energy facilities such as wind farms.

We offer the following comments that we hope will be of assistance to the USCG in completing the Atlantic Coast PARS and in determining what appropriate buffer zones should be between high-density maritime traffic routes and wind farms lease areas:

1. **Findings From Atlantic Coast PARS Must Be Applied To Current and Future OCS Wind Farm Lease Areas**

WSC has filed previous comments\(^2\) to the Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) that articulated the need for an Atlantic Coast PARS to evaluate existing vessel traffic flows and densities for vessels entering and leaving ports and for vessels transiting along the coast.

Completion of the Atlantic Coast PARS is essential because wind farm lease areas are being rapidly considered in OCS waters off multiple Atlantic states. The existence of the lease areas and the measures intended to resolve navigational safety issues created by those areas can, in turn, create navigational safety issues in other areas and for vessels transiting along the coast. In fact, the most significant impact of lease areas and related navigational safety management measures may not be on the interaction between vessels and wind turbine towers, but rather on the interactions among vessels.

According to the USCG, the PARS will help the agency identify where appropriate navigational safety exclusion areas should be applied, determine if any changes to existing navigation safety management measures are warranted, and quantify the sizes and locations of buffer zones between vessel traffic routes and wind farm lease areas.

These findings must be applied to OCS wind farm lease areas that are already under consideration as well as to future OCS wind farm lease areas. This will ensure that commercial vessels can continue to transport America’s waterborne commerce safely and without unreasonable hindrance. We encourage the USCG to inform BOEMRE and the various State Renewable Energy Task Forces that the PARS findings will be applied to current and future OCS

\(^1\) Liner vessels operate on fixed schedules among pre-determined ports. The Council’s member lines operate containerships, roll-on/roll-off, and car carrier vessels. A list of the Council’s members may be found at www.worldshipping.org.

\(^2\) Those comments may be found in BOEMRE docket numbers BOEM-2011-0005, BOEM-2010-0077, BOEM-2010-0063, and BOEM-2010-0038 and on the WSC website at http://www.worldshipping.org/public-statements/regulatory-comments/united-states.
wind farm lease areas and that this means that current wind farm lease areas will be subject to additional navigational safety measures that may include new exclusion areas and establishment of buffer zones between maritime traffic routes and the wind farm lease areas.

2. Comments on the Development of Navigational Safety Buffer Zones

According to the USCG, one of the objectives of the PARS is to determine what would be appropriate buffer zones between maritime traffic routes (including traffic separation schemes and undesignated high-density routes) and wind farm lease areas. Buffer zones located between the edge of a maritime traffic route and the edge of the boundary of a wind farm lease area are essential to the safe navigation of vessels that are operating in the maritime traffic route. Buffer zones provide an area of open water that transiting ships can use in bad weather or if the ship loses power or steering, or suffers some other engineering casualty that forces the vessel to quickly depart the maritime traffic route.

A. Guidelines for Determining Width of Buffer Zones

We understand that the USCG does not have guidelines for determining the width of buffer zones between maritime routes and fixed wind farm turbines. We are also not aware of any specific International Maritime Organization (IMO) circulars or guidance documents to aid in the development of buffer zones between traffic routes and fixed objects. The United Kingdom’s Maritime and Coast Guard Agency, however, published “Marine Guidance Note” (MGN) number 371, which provides some guidance on buffer zone widths between wind farms and maritime shipping routes based on the risk of collision they would pose. The chart on page 13 indicates that the minimum suggested buffer zone to achieve a “low” risk of collision is at least 2 nautical miles (nm).

B. Vessel Masters’ Views on Buffer Zones and Vessel Maneuvering Characteristics

We canvassed our Member companies to obtain vessel masters’ views regarding liner vessel maneuvering characteristics and how wide buffer zones should be. The responses were provided from masters of large liner vessels that range in length from 800 to more than 1,000 feet and displace more than 100,000 tons when fully loaded. These vessels make regularly scheduled calls at multiple U.S. ports during each voyage to the United States.

- **Width of Buffer Zones:** When asked for recommendations regarding what the minimum width of a buffer zone would be, the majority of vessel masters stated that 2 nm would be preferred. Vessel masters indicated that a 2 nm buffer would provide adequate maneuvering room to address the most likely contingencies -- loss of steering or propulsion -- and would provide sufficient space for the vessel to anchor in an emergency. Vessel

masters also commented that buffer zones should generally increase in width as vessel operating speeds increase to allow for the additional space required for the vessel to maneuver. Liner vessels operating near to shore at speeds between 10 and 15 knots may require a 2 nm buffer zone, whereas vessels operating at offshore at speeds in excess of 20 knots (which would be commonly attained by liner vessels transiting along the coast), may require a buffer zone in excess of 3 nm.

- **Liner Vessel Maneuvering Characteristics**

 Vessel masters provided the distances required for the following maneuvers that may occur when a vessel encounters an emergency while operating in a maritime traffic route (all values are approximate):

 - **Crash Stop** (backing the vessel from full speed): ~1.75 - 2.4 nm
 - **Complete Stop** (letting the vessel stop on its own from full speed): ~3 to 3.5 nm
 - **Emergency Anchoring**: ~1.5 to 1.75 nm
 - **Width (i.e. transfer) of a 180° turn** (starting at full speed): ~0.9 nm

3. **Conclusion**

 We appreciate the opportunity to provide comments to the USCG on this important PARS. WSC appreciates the desire to develop clean energy sources, such as wind power, on the Atlantic OCS; however, proper government planning is essential to ensure that wind energy projects are not sited in commercial shipping corridors and do not risk the safe navigation of vessels carrying America’s waterborne commerce. This PARS should help ensure that commercial vessels can operate safely and without unreasonable obstacles off the U.S. Atlantic coast.

 # # #